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i. INTRODUCTION

The strong interaction between structural dynamics and active control is a

well-recognized challenge in the analysis of controlled flexible structures.

But it is only recently that the same interaction has been exploited in the

design process. The traditional design approach in which the control design

comes very late in the development -- typically after the structure has been

designed and built .-- is no longer viable. Although this approach has produced

satisfactory results for the attitude control of relatively rigid space

structures, it will not be suitable for the ambitious space missions that

require precise controlled pointing of telescopes, interferometers and the

vibration suppression for science instruments mounted on large flexible

structures. In such systems, designing the structure and designing its control

become entwined. This dictates early consideration of the control design --

well before any detailed structural design is finalized. And just as the

structure is optimally designed to meet such performance metrics as minimum

mass or response to external disturbances, it should be optimally designed to

meet its ultimate control performance as well.

A natural way to introduce the control element into the overall design

process is through an optimization procedure that combines the structural and

control design criteria into a single problem formulation. A number of authors

[1-6] have taken this perspective. In terms of the types of design parameters

and constraints considered, Ref. (2) is probably the most extensive in that the

design variables include structure parameters, actuator locations and feedback

matrix. Static output feedback is used, and the performance objectives include

total mass and robustness measures. Constraints are imposed on the eigenvalue

placements, performance bounds, and structural constraints. Since not all of

the constraints are commensurate, they are relaxed using a homotopy approach.

Just as with Ref. (6), the approach taken in the present paper is not to

produce the "best" optimized point design, but to produce a family of Pareto

optimal designs representing options that assist in early trade studies. The

philosophy is that these are candidate designs to be passed on for further

consideration, and their function is more to guide the system design rather

than to represent the ultimate design.

An optimization approach that is consistent with this philosophy is to

utilize multiple cost objectives that include an LQG cost criterion in

conjunction with structural cost(s), and possibly other control related costs.
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After introducing the combined objective formulation in the setting of vector

optimization, we derive the necessary conditions for Pareto optimality. No

behavioral constraints are explicitly imposed in the problem formulation and a

homotopy approach is used to generate a family of optimum designs. The intent

of this paper is to explore this design approach and to provide an exposition

of the computational aspects of the problem using numerical examples.

2. COMBINED OPTIMIZATION

The combined optimization approach can be best appreciated when contrasted

with the traditional sequential optimization. In the sequential optimization,

the structure is first optimized by selecting the design variable, a (e.g.

member sizes) which minimize a structural criterion Js(_) - often taken as the

mass of the structure subject to some behavioral constraints h(_)_0 on

deformations, stresses, open-loop frequencies, etc.

min J (a) • h(_)>O aeD (2 I)
S ' _ '

where D is the physical domain for a. Second, having completely specified the

optimal structural design _*, the control optimization is carried out with e*

fixed. For example, LQG or H_ optimal control designs pose the problem:

min J (_*,C) (2.2)
C

C

where Jc represents either of the control criterion, and C is allowed to vary

over the class of stabilizing compensators for the plant.

By contrast, in the combined optimization formulation, the goal is to first

merge the criteria of interest (here Js and Jc) into one using non-negative

multipliers 8, and 6, then optimize the combined criterion over the original

design variable space _, C:

min [$Js(_) + 6Jc(a,C] (2.3)

Q,C

The following expression compares the results of the two optimization

procedures outlined above.

mln [_Js(_) + 6Jc(a,C)]<[min__ _Js(_) + min 6Jc(_*,C)]
a,C _ C

(2.4)

The right-hand side of (2.4) corresponds to performing the sequential

optimization by solving (2.1) for _*, followed by solving (2.2) for C*. Note

that the optimal solution of the rlght-hand side is independent of _ and 6-

but not so for the combined optimization embodied by the left-hand side. In

terms of the total cost, expression (2.4) states the fact that the combined

optimization is never inferior to the sequential optimization. In the vector

optimization setting, the relative weighting of _ and 6 serves as a parameter

that allows the generation of an entire family of Pareto optima.

In the present paper, only two objective criteria are dealt with. But it

is not difficult to generalize the approach to incorporate other criteria such
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as minimum open-loop frequency and certain controller robustness measures. In

general these criteria are noncommensurate, and there is no unique solution

that minimizes all criteria Jl ..... JN simultaneously. Thus, one must look for

Pareto optimal solutions as outlined below.

First one assembles the criteria Ji:D_R, i-i ..... N into a single criterion

J:D_R N, J(_)=(Jl(_) ..... JN(_)) T. Then the cone CO z {x_RN:xi_0, i-i ..... N} is

defined to induce a partial ordering _ on RN by x<_y if y-x _C o. Now let _D.

A design vector _*ED is said to be (strongly) Pareto optimal if J(_) _ J(_*)

implies J(_)zJ(_*). A necessary condition for Pareto optimality is contained

in the following theorem due to Lin [7].

Theorem 2.1: If _* is Pareto optimal for the combined criterion J, and D is an

open set, then there exists a nonzero vector Z_C o such that zTJ,(a*)-0. Here

J, denotes the differential of J.

For the two-term optimization problem in (2.3), we find that the Pareto

optimal solution to J z (Js, Jc) T can be generated by solving for the necessary

conditions for extremizing the following convex combination JA:

JA - (I-A) Js (_) + AJc(_,C); A_[0,1] (2.5)

where A replaces fl, 6 in (2.3). The form of Eq. (2.5) suggests a homotopy (or

continuation) approach for generating a family of Pareto optima as A is

propagated from 0 to i.

3. NECESSARY CONDITIONS

We begin with the ns degree-of-freedom dynamical system

M(_)_ + D(a)r + K(_)r - Clu + C2v (3.1)

where M, D, and K are the nsxn s mass, damping and stiffness, GI is the constant

nsxn u control influence matrix, and G2 is the constant nsxn d disturbance

matrix. The vectors r, u, and v are respectivel_, physical degrees-of-freedom,
control forces and disturbances. Let x - (r,r) _. Then the first order state

equation is

x - A(a)x + Bl(a)u + B2(a) v + v' (3.2)

where

0 [:] [:]= (3.2a)
- , - , B2 -IG2A M_IK _M_ID B1 _IG 1

and an additional disturbance v" independent of _ has been introduced for

greater flexibility of the formulation. We assume that (3.2) has measured

output variables y and controlled output variables z:

y - Clx + w,

z - C2x

(3.3)
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and that u, u', and w are uncorrelated white noise processes with intensities

Qu, v, and Qw, respectively.

In the remainder of this paper, the total mass of the structure is assumed

to represent the structural criterion Js. Thus, for a structure consisting of

n a one-dimensional finite elements, each having a cross-sectional area _i,

length 2i and density p:

n
a

J - _ p2.a. (3.4)
S 1 1

i

For the control criterion Jc associated with (3.2) and (3.3), we assume the LQG

index

J - lim E(zT(t)Dz(t) + xTDI x + uT(t)Ru(t)} (3.5)
C

t--=

where E is the expectation, D and D I are non-negative definite weighting

matrices, and R is positive definite. Although D I is assumed independent of o,

D could possibly depend on _. The latter case would arise, for instance, if

the first term in (3.5) were to represent the total energy in the system with

z - (r,r) T and D - diag(K,M). Under standard assumptions of stabilizability

and detectability, the optimal compensator C* for (3.5) is implemented by [8]:

- -BIPxUO O

- (A-KfC)x ° + Kfy + BlU °
O

(3.6)

and the optimal cost Jc associated with this compensator is

Jc(C) - tr{P(B2QvB _ + V) + PfPBIR'IB I P}. (3.7)

where P and Pf are the unique positive definite solutions to the algebraic

Riccati equations

ATp + PA + Do- PBIR'IBI P - O,

(3.8)

T <iciPf 0APf + PfA T + B2QuB_ + V - PfC I

T _C 2 + DI ' and Kf pfcl _iand D O - C 2

With the above representation for Jc, we seek the optimality conditions for

mln jA(_)_(I_A)js(_)+<v,_>+Atr{P(B2QuB_+V)+PfPBIR-IBIT p) (3.9)
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n a

subject to the constraints in (3.8). In (3.9) an na-dimensional vector veR

has been introduced to "regularize" the problem and to serve the purpose of

initializing the homotopy path.

Proposition 3.1 Let 7_,+denote the set of nx xn x positive definite matrices.

The optimality conditions for _* to be a local extremum of (3.9) subject

to (3.8) are the zeros of the function H: RxR na x Z+ x Z+ _ Rna x Z+ x Z+

defined by H - [HI, H2, H 3, H 4, H5], where

HI(A,_,ZI,Z2,P,Pf) -

-i T 8D
aJ s a(B2QvB 2) a(BiR BI) ,@ATn _ +

(l_A)a__i +vi+xtr{ P a=i + ppfp a_i + zl[a_i r + a=i __eo8=i

-i T
@(BIR BI) a(B2QuB 2) @(C I <Ic I)

"P a=. P] + z2 [A_6--Pf + Pf aAT + " Pf )
l a=i aai a=i a=i Pf] '

i-i ..... na (3.10a)

H2(A, a, Zl,Z 2, P, Pf) -

i T T -i T -I T
(A-BIR-IBTP)ZI+ZI(AT-PBIR- BI)+B2QvB2+PfPBI R BI+BIR BIPP f (3.10b)

H3(A, _, Z I, Z2, P, Pf) -

(3.10c)

H4(A, _, Z I, Z2, P, Pf) - ATp+pA+Do-PBIR'IB_p, (3.10d)

H5(A ' Zl ' Z2 p, pf) Apf+pfAT+B2QvB_+V_ T -I_, , - PfCIQ w CIP f (3.10e)

The proof of proposition (3.1) is omitted here to conserve space, but is given

in detail in Ref. [9]. Thus, for the LQG formulation, the necessary conditions

involve solving two algebraic Riccati equations (3.10d, e), two Lyapunov

equations (3.10b, c), and a gradient equation (3.10a) for _i, i-i ..... na. In
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the case of the LQR formulation, it is easily verified that the optimization

statement expressed by (3.9) reduces to

min JA(_)-(I-A)Js(_)+<v,_>+Atr{P(B2QvB_+V)) (3.11)

and that the optimality conditions reduce to finding the zeros of the simpler

function H-[HI, H2, H3] involving one Riccati and one Lyapunov equation

(instead of two as in LQG), in addition to the gradient equations:

aJ

HI(A,=,Z,P ) - (I-A) _ + ui+ Atr(P

T

a (B2QvB 2 )

aa i

aD

°
+Z [2P l+ a_i

a(BIR'IB_)

-- - P aa i P]}; i-i .... ,n a (3.12a)

H2(A,a,Z,P) - AcZ + ZA Tc + B2QuB_ + V, (3.12b)

H3(A,a,Z,P) - ATp + PA + Do PBIR'IB_p' (3.12c)

with A c - A - BIR-IBTp.

4. HONOTOPY STRATEGY

For all Ae[0,1], our goal is to minimize (3.9) in the case of the LQG

formulation or (3.11) in the case of the LQR formulation by finding the design

variables a that satisfy the corresponding optimality conditions (3.10) or

(3.12). The basic strategy is: given the solution at a value Ao, smoothly

propagate it to a new solution at Ao+AA via some local mechanism such as Newton

method or iterative optimization. This strategy has been analyzed in detail in

Ref. (9). In the following, only a summary of the results is given without

proofs, assuming the LQR formulation.

Let x denote a generic point (a, Z, P)_ Rnax _+ x _+ so that H(A, x) stands

for H(A, a, Z, P). In determining the zeros of H, the following proposition

asserts that in a small neighborhood about the optimal at A-0, there is a

smooth path parameterlzed by A consisting of the global optimal solution.

Proposition 4.1: Suppose that min Js(a) has a unique global solution a*

satisfying the second order sufficiency condition on the positivity of the
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Hessian [Js(_*)],_ _ >0. Further, assume that Js is coercive so that

i j

IJs(_) I-_= as I_I -_o. Then there exists _>0 such that (3.11) has a unique global

solution for l<_.

The next proposition provides a sufficient condition for the path to remain

locally optimal.

Proposition 4.2: Let 4(I) - (_, x(A)) denote a smooth path in

[0,r)xR na x _+ x _+ with H(4(A)) - 0 and H, x invertible for A_[0,r). Such an r

is guaranteed by Proposition 4.1. Then _(A) is a local minimum for JA for each

A_[0,r).

The purpose of the following lemma is to demonstrate that the zero set of H

is "generically" well-behaved.

Lemma 4.3: Suppose that H(0,x)E0 has a unique solution. Then for almost every

choice of (u, V, DI)_R na x _+ x _+, the solution path emanating from (0 4 x*) is

diffeomorphic to the real R and every other component of H'_(o) is

diffeomorphic to either a circle or R.

Thus, following the path defined by one of the zero curves of H, not just

the one emanating from the optimal at IE0, will not lead to a pathological

behavior such as bifurcations or curves with infinite length in bounded sets.

Another fundamental and generally difficult question that arises when employing

homotopy methods is whether or not the path remains bounded. The following

result provides a partial answer to this question.

Proposition 4.4: Suppose that Js, Bi, Do, and A are all polynomials in

_l,..._na, and assume coercivity of Js(_)/l_l. If H(0,x)-0 has a unique

solution, then for any _>0 and for almost every triple (v, V, DI)

zR na x X+ x _ , the component of H-I(0) containing (0,x*) is a bounded set in

[0,1-_]xR na x _+ x _+.

5. NUMERICAL RESULTS

The numerical experiments described in this section demonstrate the results

of the foregoing theory. Two prototype examples are used; both employing the

LQR formulation. Implementation of the homotopy strategy of the previous

section is achieved by iterative optimization, wherein the solution path for

minimizing (3.11) in terms of the homotopy parameter A starts at A-0 with

al ..... _na initialized to a predetermined sufficiently small allowable size _o.

At this point in the solution space, JA is fully weighted toward minimizing Js

only. Minimization of JAo thus yields _o* for which H(A o, Xo*)-0. For the

next iteration and for every succeeding one, A is incremented and the weighting

is shifted gradually toward Jc. For a typical iteration j, the following steps

are performed:

(i)

(ii) Initialize the minimization of JAI" by using _'_*'I ]-I"

result in _j* for which conditions (3.12) hol_.

This will
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In performing the minimization in (ii) above, we employed the Automated Design

Synthesis (ADS) system of general purpose subroutines [I0]. ADS provides a

wide selection of options at three levels: strategy, optimization, and line

search. Available strategies include sequential linear and quadratic

programming, and sequential unconstrained minimization coupled with various

penalty methods. At the optimization level, one can choose between Fletcher-

Reeves algorithm and the variable metric method of Broydon-Fletcher-Goldfarb-

Shanno (BFGS) for unconstrained minimization, or Zoutendijk's method of

feasible directions and modifications thereof for constrained minimization.

For one-dimensional line search, the options include a combination of

polynomial interpolatlon/extrapolation, solution bounding, and the method of

Golden Section. Not all combination of options are compatible at the three

levels, and the program parameters must be adjusted to suit the problem at

hand. For this purpose, an analytical function was contrived which possessed

such features as: easy to compute closed form solution, multiple minima, and

insensitivity of the functions gradient near the minima to design parameters.

Several compatible options were tried and the program parameter values (e.g.,

move limits and convergence criteria on the absolute and relative changes in

objective function between two successive iterations) were adjusted until the

closed form and numerical solution agreed within as few iterations as possible.

As a result of these numerical experiments, the popular BFGS variable metric

method for unconstrained minimization emerged as the one of choice for use in

the combined control-structure optimization examples that follow. During the

one dimensional line search, the minimum is located by first computing the

bounds, then using polynomial interpolation.

Example I: The cantilever beam of Fig. i resembling a flexible appendage" of a

large structure is modelled by three finite elements with two degrees-of-

freedom (dof) at each node. The structural design variables are the x-

sectional areas _I, _2, _3 of the elements. The disturbance u represents a

transverse sound pressure modelled by uncorrelated unit impulses at t-0

concentrated at the three nodal transverse dof. The control force u is applied

at the free end along the transverse dof direction. With the Js given by

(3.4), we seek the minimum of (3.11) for A_[Q,I],_ subject to conditions (9.12).

Here, the weighting matrices were taken as D-102 x diag(K,M), and R-10"4, and

the initial a i used were _i-_o-lxl0 "7, i-i,...,3.

Table I lists the family of Pareto optimal designs _i* that minimize

JA, AE[0,.99] along with the corresponding values for Jc, Js and JA- The

variations of the Pareto optimal Jc*(A), Js*(A) and JA*(A) are shown in Fig. 2.

A number of observations can be made from Table 1 and Fig. 2:

(i) The noncommensurate nature of the two costs Jc and Js is apparent as the

weight is shifted between them: while Jc is a strictly decreasing

function of A, Js is a strictly increasing function of A. This is

consistent since a stiffer structure requires less control energy.

(il) Except near A-O, the optimal structural shapes that minimize JA for the

disturbance, choice of D and R, and control forces described above are

essentially _i-_,2 near the fixed end, and a much smaller _3 near the

free end. This is a physically plausible optimum shape that minimizes

the mixture of high strain energy density near the fixed end and high

kinetic energy density near the free end. Other choices of disturbance,

control location and D, R are expected to alter the optimal beam shape.
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(iii) Although the design at A-0 is guaranteed to be globally optimal

(Proposition 4.1), it is possible that designs generated as A is

continued may be only locally optimal. To assess this possibility, the

optimal designs listed for A-.200, A-.700 and A-.900 were re-examined

separately. For each case, the minimization was restarted with randomly

selected initial _i values. In most cases, the minimization converged

to the same or to a higher minimum than obtained in Table. I.

Table i. Pareto Optimal Designs of Example 1

0.0

000001

00001

0001

005

010

020

040

i00

200

300

400

500

600

700

800

900

940

980

990

Optimal Design xl0 "3

_I a2 a3

00010

00035

00116

00570

0585

0801

113

159

.237

.367

.425

.563

.622

.795

.886

1.20

1.68

1.93

3.37

3.95

00010

00038

00114

00625

0708

0802

iii

155

249

349

457

532

650

751

934

1 14

1 59

2 07

3 22

4 40

.00010

00032

00077

00287

0187

0212

0300

0438

0761

112

154

189

231

279

346

44

62

82

1 37

1 81

Jc Js JA

350000.

96000.

30800.

5870.

495.

391.

265.

177.

102.

61.8

46.1

35.50

27.93

21.33

16.86

11.78

7.30

5.40

2.58

1.81

.007

.026

.076

.369

3.68

4.52

6.33

8.90

14.00

20.62

25 80

31 97

37 43

45 45

53 92

69 39

96 98

119 9

198 2

253 6

.007

.122

.384

.955

6.14

8.89

11.52

15.64

22.77

28.86

31.92

32.99

32.68

30.97

27.98

23.30

16.27

12.27

6.49

4.33

Example 2: The beam in this example (See Fig. 3) simulates a flexible

appendage (length - 45 m) attached to a rigid hub (inertia - 50 kg.m 2) to which

a control torque is applied to counteract the transverse unit impulse at the

free end. The beam is modelled by three finite elements of constant width -

.001 m, but whose nodal depths d I ..... d4 represent design variables having a

lower bound _ .001 m. Here again, Js represents the total mass of the flexible

beam (excluding the hub). For the control objective Jc, the response energy is

weighed by D1 so as to minimize the transverse free end displacement, and R is
taken - l.xl0 "4.

Table 2 and Fig. 4 represent analogous results to those presented for

Example i in Table I and Fig. 2. In addition to observation (i) of the

previous example - which holds here as well the following remarks can be made

with reference to the results of this example:
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(i)

(ii)

For small values of A (e.g. A-0.1), where the total mass Js dominates
the minimization of JA, the optimal shapes tend to have a small slope
from dl_d2_d3, followed by a sharper slope from d3_d4. As I increases,
minimizing Js becomes less important than minimizing Jc (tip
displacement response energy plus control energy). As a result, the
beambecomesgradually stiffer, and the monotonic slope from dl_d2_d3_d4
associated with small A values gradually disappears at I=.45, then gives
way to a pronounced inflection of slope for d3_d4 for I>.45. This
results in a larger allocation of mass at the tip. This type of shape
is physically consistent with the requirements of the two parts of the
control objective Jc: a stiffer structure near the hub that is reduced
toward the tip (free end) makes best distribution of mass, while
minimizing the tip displacement response. On the other hand, a large
mass at the tip (where the disturbance exists) makes the disturbance
less effective - thus requiring less control effort.

To confirm the above interpretation, the case of I=0.7 in Table 2 _i.e.
R-10-4) was re-examined for smaller and larger values of R; R-10 -° and

R-10-z, respectively. As Fig. 5 shows, smaller values of R give more

weighting to the tip displacement response energy part of Jc, thus

giving rise to the optimum shape being a stiffer structure near the hub

which is reduced toward the tip. Conversely, larger values of R (e.g.

R-IO -2) give more relative weighting to the control energy part of Jc,

which is best minimized by the presence of the heavier tip mass. It is

interesting to note the similar effect of varying R and varying I on the

optimal shapes.

Table 2. Pareto Optimal Designs for Example 2.

.000

.0001

.001

.010

.i00

.200

.300

.400

5OO

600

700

8OO

900

92O

940

960

98O

990

Optimum Design

dI d2 d3 d4

001

02404

03552

05223

07699

08759

09550

10258

10944

11715

12657

13944

16369

17299

18542

20578

25035

29401

.001 .001 .001

.02363 .02291 .01366

Jc Js J1

1.6x10 +I0 .075

3355 26 1628

.03485 .03359 .02065

.05134 .04940 .03043

.07559 .07157 .05303

.08563 .08031 .06659

•09267 .08657 .07847

•09867 .09187 .09085

.10389 .09670 .10470

10948 .10135 .12176

11576 .10681 .14516

12322 .11304 .18055

13641 .12430 .24923

14104 .12893 .27374

14815 .13565 .30544

16117 .14818 .35131

19468 .18421 .42401

25488 .24878 .48165

482

70

i0

5

3

2

i

i

i

6 2 404

78 3 54

03 5 28

33 6 05

54 6 62

56 715

93 7.66

46 8 22

08 8 92

77 9 87

47 ii 63

41 12 28

34 13 18

26 14 64

16 17 83

09 22 20

.075

1.963

2.884

4.21

5.757

5.906

5.703

5.31

4.79

4.17

3.43

2.59

1.59

1.355

1.107

0.83

0.52

0.32
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(iii) Of general interest to problems in combined optimization at least

numerically - is the question as to the degree of "roughness" of the

hyper-surface JA(_). A partial answer to this question is provided in

Fig. 6 after introducing idealizations that reduce the number of

variables from four (d I ..... d4) to only two (d3, d4) , so that a three

dimensional plot could be generated. Figure 6 shows such a surface in

the neighborhood of the optimum for the case A-0.7 in Table 2. This is

achieved by fixing dl-.13, %llowing d 3 and d 4 to assume various values

larger and smaller than those in Table 2 for I-0.7, and letting

d2-h(dl+d3). Assuming that the idealizations above (which led to

reducing the dimensionality of the JA surface) did not alter the basic

topology of JA surface, it appears from Fig. 6 that JA is a smooth

function of the design variables at least in the neighborhood of the

minimum. Furthermore, with these idealizations it appears that JA is

relatively flat near the minimum along the d4 axis, and that the optimum

shape is some linear combination of the four basic shapes depicted at

the corners.

6. CONCI/JSIONS

An approach for combined control-structure optimization keyed to enhancing

early design trade-offs has been outlined and illustrated by numerical

examples. The approach employs a homotopic strategy and appears to be

effective for generating families of designs that can be used in these early

trade studies.

Analytical results were obtained for classes of structure/control

objectives with LQG and LQR costs. For these, we have demonstrated that global

optima can be computed for small values of the homotopy parameter. Conditions

for local optima along the homotopy path were also given. Details of two

numerical examples employing the LQR control cost were given showing variations

of the optimal design variables along the homotopy path. The results of the

second example suggest that introducing a second homotopy parameter relating

the two parts of the control index in the LQG/LQR formulation might serve to

enlarge the family of Pareto optima, but its effect on modifying the optimal

structural shapes may be analogous to the original parameter A.
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Fisure I

EXAMPLE
CANTILEVER BEAM

I •

PROBLEM

PRESSURE IMPULSE

CONTROL FORCE _

rl[)r 2 r3[)r 4 rs ]_)re

0K1 G3 G3

_1.15m --:-- I=lSm _1__1_ I=lSm_

STRUCTURAL MODEL: MASS DENSITY - 1660 Kg/m s, MOOULUS • 9.Se x 10 'o N/m =

MODAL DAMPING • 0.5%

CONTROL: DISTURBANCE = TRANSVERSE PRESSURE IMPULSE CONCENTRATED

AT THE NODES

RESPONSE ENERGY WEIGHTED BY D s Olag (K,M) x 102,

CONTROL ENERGY WEIGHTED BY R • 1 x 104

DESIGN VARIABLES: al, a2, as _. 1 x 10 .7

Figure 2

CANTILEVER BEAM OPTIMIZATION

i 0.7

4

U

-.)

Js (i
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Figure 3

EXAMPLE 2.
HUB-BEAM PROBLEM

HUB

CONTROL TORQUE DISTURBANCE J 0.001

d1 d2 cl3 d4

STRUCTURAL MOOEL: MASS DENSITY .. 1660 Kg/m _, MODULUS ,, 9.56 x 10 l° N/m2

MOOAL DAMPING ,. 0.5%,

CONTROL: DISTURBANCE -, UNII" IMPULSE

RESPONSE ENERGY WEIGHTED TO MINIMIZE ENO OISPLACEMENT, FI • 1 x 10.4

DESIGN VARIABLES: d_,. •., d4 _).001

Figure 4

HUB-BEAM OPTIMIZATION

J, (max • 1.6 X 1010)
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Figure 5

OPTIMUM SHAPES

HUB

R= 10"1/ /
R= 104.-/

R = 10 .2

Figure 6

J_.(ds,d4) SURFACE NEAR THE MINIMUM, _ = 0.7

da

,07

°'o,
• 4

15.16 ,10 .12 14
.08
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